

sshuttle: where transparent proxy meets VPN meets ssh

	Date:	Jul 08, 2017

	Version:	0.78

Contents:

	Overview

	Requirements
	Client side Requirements

	Server side Requirements

	Additional Suggested Software

	Installation

	Usage
	Usage Notes

	Platform Specific Notes
	TPROXY

	Microsoft Windows

	Man Page
	Synopsis

	Description

	Options

	Examples

	Discussion

	How it works

	Support

	Useless Trivia

	Change log
	0.78.2 - 2017-07-09

	0.78.1 - 2016-08-06

	0.78.0 - 2016-04-08

	0.77.2 - 2016-03-07

	0.77.1 - 2016-03-07

	0.77 - 2016-03-03

	0.76 - 2016-01-17

	0.75 - 2016-01-12

	0.74 - 2016-01-10

Indices and tables

	Index

	Search Page

Overview

As far as I know, sshuttle is the only program that solves the following
common case:

	Your client machine (or router) is Linux, MacOS, FreeBSD, OpenBSD or pfSense.

	You have access to a remote network via ssh.

	You don’t necessarily have admin access on the remote network.

	The remote network has no VPN, or only stupid/complex VPN
protocols (IPsec, PPTP, etc). Or maybe you are the
admin and you just got frustrated with the awful state of
VPN tools.

	You don’t want to create an ssh port forward for every
single host/port on the remote network.

	You hate openssh’s port forwarding because it’s randomly
slow and/or stupid.

	You can’t use openssh’s PermitTunnel feature because
it’s disabled by default on openssh servers; plus it does
TCP-over-TCP, which has terrible performance (see below).

Requirements

Client side Requirements

	sudo, or root access on your client machine.
(The server doesn’t need admin access.)

	Python 2.7 or Python 3.5.

Linux with NAT method

Supports:

	IPv4 TCP

	IPv4 DNS

Requires:

	iptables DNAT, REDIRECT, and ttl modules.

Linux with TPROXY method

Supports:

	IPv4 TCP

	IPv4 UDP (requires recvmsg - see below)

	IPv6 DNS (requires recvmsg - see below)

	IPv6 TCP

	IPv6 UDP (requires recvmsg - see below)

	IPv6 DNS (requires recvmsg - see below)

Full UDP or DNS support with the TPROXY method requires the recvmsg()
syscall. This is not available in Python 2, however it is in Python 3.5 and
later. Under Python 2 you might find it sufficient to install PyXAPI [http://www.pps.univ-paris-diderot.fr/~ylg/PyXAPI/] in
order to get the recvmsg() function. See TPROXY for more
information.

MacOS / FreeBSD / OpenBSD / pfSense

Method: pf

Supports:

	IPv4 TCP

	IPv4 DNS

	IPv6 TCP

	IPv6 DNS

Requires:

	You need to have the pfctl command.

Windows

Not officially supported, however can be made to work with Vagrant. Requires
cmd.exe with Administrator access. See Microsoft Windows for more information.

Server side Requirements

The server can run in any version of Python between 2.4 and 3.6.
However it is recommended that you use Python 2.7, Python 3.5 or later whenever
possible as support for older versions might be dropped in the future.

Additional Suggested Software

	You may want to use autossh, available in various package management
systems.

	If you are using systemd, sshuttle can notify it when the connection to
the remote end is established and the firewall rules are installed. For
this feature to work you must configure the process start-up type for the
sshuttle service unit to notify, as shown in the example below.

[Unit]
Description=sshuttle
After=network.target

[Service]
Type=notify
ExecStart=/usr/bin/sshuttle --dns --remote <user>@<server> <subnets...>

[Install]
WantedBy=multi-user.target

Installation

	From PyPI:

pip install sshuttle

	Clone:

git clone https://github.com/sshuttle/sshuttle.git
./setup.py install

Usage

Note

For information on usage with Windows, see the Microsoft Windows section.
For information on using the TProxy method, see the TPROXY section.

Forward all traffic:

sshuttle -r username@sshserver 0.0.0.0/0

	Use the sshuttle -r parameter to specify a remote server.

	By default sshuttle will automatically choose a method to use. Override with
the sshuttle --method parameter.

	There is a shortcut for 0.0.0.0/0 for those that value
their wrists:

sshuttle -r username@sshserver 0/0

If you would also like your DNS queries to be proxied
through the DNS server of the server you are connect to:

sshuttle --dns -r username@sshserver 0/0

The above is probably what you want to use to prevent
local network attacks such as Firesheep and friends.
See the documentation for the sshuttle --dns parameter.

(You may be prompted for one or more passwords; first, the local password to
become root using sudo, and then the remote ssh password. Or you might have
sudo and ssh set up to not require passwords, in which case you won’t be
prompted at all.)

Usage Notes

That’s it! Now your local machine can access the remote network as if you
were right there. And if your “client” machine is a router, everyone on
your local network can make connections to your remote network.

You don’t need to install sshuttle on the remote server;
the remote server just needs to have python available.
sshuttle will automatically upload and run its source code
to the remote python interpreter.

This creates a transparent proxy server on your local machine for all IP
addresses that match 0.0.0.0/0. (You can use more specific IP addresses if
you want; use any number of IP addresses or subnets to change which
addresses get proxied. Using 0.0.0.0/0 proxies everything, which is
interesting if you don’t trust the people on your local network.)

Any TCP session you initiate to one of the proxied IP addresses will be
captured by sshuttle and sent over an ssh session to the remote copy of
sshuttle, which will then regenerate the connection on that end, and funnel
the data back and forth through ssh.

Fun, right? A poor man’s instant VPN, and you don’t even have to have
admin access on the server.

Platform Specific Notes

Contents:

	TPROXY

	Microsoft Windows

TPROXY

TPROXY is the only method that has full support of IPv6 and UDP.

There are some things you need to consider for TPROXY to work:

	The following commands need to be run first as root. This only needs to be
done once after booting up:

ip route add local default dev lo table 100
ip rule add fwmark 1 lookup 100
ip -6 route add local default dev lo table 100
ip -6 rule add fwmark 1 lookup 100

	The --auto-nets feature does not detect IPv6 routes automatically. Add IPv6
routes manually. e.g. by adding '::/0' to the end of the command line.

	The client needs to be run as root. e.g.:

sudo SSH_AUTH_SOCK="$SSH_AUTH_SOCK" $HOME/tree/sshuttle.tproxy/sshuttle --method=tproxy ...

	You may need to exclude the IP address of the server you are connecting to.
Otherwise sshuttle may attempt to intercept the ssh packets, which will not
work. Use the --exclude parameter for this.

	Similarly, UDP return packets (including DNS) could get intercepted and
bounced back. This is the case if you have a broad subnet such as
0.0.0.0/0 or ::/0 that includes the IP address of the client. Use the
--exclude parameter for this.

	You need the --method=tproxy parameter, as above.

	The routes for the outgoing packets must already exist. For example, if your
connection does not have IPv6 support, no IPv6 routes will exist, IPv6
packets will not be generated and sshuttle cannot intercept them:

telnet -6 www.google.com 80
Trying 2404:6800:4001:805::1010...
telnet: Unable to connect to remote host: Network is unreachable

Add some dummy routes to external interfaces. Make sure they get removed
however after sshuttle exits.

Microsoft Windows

Currently there is no built in support for running sshuttle directly on
Microsoft Windows.

What we can really do is to create a Linux VM with Vagrant (or simply
Virtualbox if you like). In the Vagrant settings, remember to turn on bridged
NIC. Then, run sshuttle inside the VM like below:

sshuttle -l 0.0.0.0 -x 10.0.0.0/8 -x 192.168.0.0/16 0/0

10.0.0.0/8 excludes NAT traffic of Vagrant and 192.168.0.0/16 excludes
traffic to local area network (assuming that we’re using 192.168.0.0 subnet).

Assuming the VM has the IP 192.168.1.200 obtained on the bridge NIC (we can
configure that in Vagrant), we can then ask Windows to route all its traffic
via the VM by running the following in cmd.exe with admin right:

route add 0.0.0.0 mask 0.0.0.0 192.168.1.200

sshuttle

Synopsis

sshuttle [options] [-r [username@]sshserver[:port]] <subnets ...>

Description

sshuttle allows you to create a VPN connection from your
machine to any remote server that you can connect to via
ssh, as long as that server has python 2.3 or higher.

To work, you must have root access on the local machine,
but you can have a normal account on the server.

It’s valid to run sshuttle more than once simultaneously on
a single client machine, connecting to a different server
every time, so you can be on more than one VPN at once.

If run on a router, sshuttle can forward traffic for your
entire subnet to the VPN.

Options

	
subnets

	A list of subnets to route over the VPN, in the form
a.b.c.d[/width][port[-port]]. Valid examples are 1.2.3.4 (a
single IP address), 1.2.3.4/32 (equivalent to 1.2.3.4),
1.2.3.0/24 (a 24-bit subnet, ie. with a 255.255.255.0
netmask), and 0/0 (‘just route everything through the
VPN’). Any of the previous examples are also valid if you append
a port or a port range, so 1.2.3.4:8000 will only tunnel traffic
that has as the destination port 8000 of 1.2.3.4 and
1.2.3.0/24:8000-9000 will tunnel traffic going to any port between
8000 and 9000 (inclusive) for all IPs in the 1.2.3.0/24 subnet.
It is also possible to use a name in which case the first IP it resolves
to during startup will be routed over the VPN. Valid examples are
example.com, example.com:8000 and example.com:8000-9000.

	
--method [auto|nat|tproxy|pf]

	Which firewall method should sshuttle use? For auto, sshuttle attempts to
guess the appropriate method depending on what it can find in PATH. The
default value is auto.

	
-l, --listen=[ip:]port

	Use this ip address and port number as the transparent
proxy port. By default sshuttle finds an available
port automatically and listens on IP 127.0.0.1
(localhost), so you don’t need to override it, and
connections are only proxied from the local machine,
not from outside machines. If you want to accept
connections from other machines on your network (ie. to
run sshuttle on a router) try enabling IP Forwarding in
your kernel, then using --listen 0.0.0.0:0.
You can use any name resolving to an IP address of the machine running
sshuttle, e.g. --listen localhost.

For the tproxy and pf methods this can be an IPv6 address. Use this option
twice if required, to provide both IPv4 and IPv6 addresses.

	
-H, --auto-hosts

	Scan for remote hostnames and update the local /etc/hosts
file with matching entries for as long as the VPN is
open. This is nicer than changing your system’s DNS
(/etc/resolv.conf) settings, for several reasons. First,
hostnames are added without domain names attached, so
you can ssh thatserver without worrying if your local
domain matches the remote one. Second, if you sshuttle
into more than one VPN at a time, it’s impossible to
use more than one DNS server at once anyway, but
sshuttle correctly merges /etc/hosts entries between
all running copies. Third, if you’re only routing a
few subnets over the VPN, you probably would prefer to
keep using your local DNS server for everything else.

	
-N, --auto-nets

	In addition to the subnets provided on the command
line, ask the server which subnets it thinks we should
route, and route those automatically. The suggestions
are taken automatically from the server’s routing
table.

	
--dns

	Capture local DNS requests and forward to the remote DNS
server.

	
--python

	Specify the name/path of the remote python interpreter.
The default is just python, which means to use the
default python interpreter on the remote system’s PATH.

	
-r, --remote=[username@]sshserver[:port]

	The remote hostname and optional username and ssh
port number to use for connecting to the remote server.
For example, example.com, testuser@example.com,
testuser@example.com:2222, or example.com:2244.

	
-x, --exclude=subnet

	Explicitly exclude this subnet from forwarding. The
format of this option is the same as the <subnets>
option. To exclude more than one subnet, specify the
-x option more than once. You can say something like
0/0 -x 1.2.3.0/24 to forward everything except the
local subnet over the VPN, for example.

	
-X, --exclude-from=file

	Exclude the subnets specified in a file, one subnet per
line. Useful when you have lots of subnets to exclude.

	
-v, --verbose

	Print more information about the session. This option
can be used more than once for increased verbosity. By
default, sshuttle prints only error messages.

	
-e, --ssh-cmd

	The command to use to connect to the remote server. The
default is just ssh. Use this if your ssh client is
in a non-standard location or you want to provide extra
options to the ssh command, for example, -e 'ssh -v'.

	
--seed-hosts

	A comma-separated list of hostnames to use to
initialize the --auto-hosts scan algorithm.
--auto-hosts does things like poll local SMB servers
for lists of local hostnames, but can speed things up
if you use this option to give it a few names to start
from.

If this option is used without --auto-hosts,
then the listed hostnames will be scanned and added, but
no further hostnames will be added.

	
--no-latency-control

	Sacrifice latency to improve bandwidth benchmarks. ssh
uses really big socket buffers, which can overload the
connection if you start doing large file transfers,
thus making all your other sessions inside the same
tunnel go slowly. Normally, sshuttle tries to avoid
this problem using a “fullness check” that allows only
a certain amount of outstanding data to be buffered at
a time. But on high-bandwidth links, this can leave a
lot of your bandwidth underutilized. It also makes
sshuttle seem slow in bandwidth benchmarks (benchmarks
rarely test ping latency, which is what sshuttle is
trying to control). This option disables the latency
control feature, maximizing bandwidth usage. Use at
your own risk.

	
-D, --daemon

	Automatically fork into the background after connecting
to the remote server. Implies --syslog.

	
--syslog

	after connecting, send all log messages to the
syslog(3) service instead of stderr. This is
implicit if you use --daemon.

	
--pidfile=pidfilename

	when using --daemon, save sshuttle‘s pid to
pidfilename. The default is sshuttle.pid in the
current directory.

	
--disable-ipv6

	If using tproxy or pf methods, this will disable IPv6 support.

	
--firewall

	(internal use only) run the firewall manager. This is
the only part of sshuttle that must run as root. If
you start sshuttle as a non-root user, it will
automatically run sudo or su to start the firewall
manager, but the core of sshuttle still runs as a
normal user.

	
--hostwatch

	(internal use only) run the hostwatch daemon. This
process runs on the server side and collects hostnames for
the --auto-hosts option. Using this option by itself
makes it a lot easier to debug and test the --auto-hosts
feature.

Examples

Test locally by proxying all local connections, without using ssh:

$ sshuttle -v 0/0

Starting sshuttle proxy.
Listening on ('0.0.0.0', 12300).
[local sudo] Password:
firewall manager ready.
c : connecting to server...
 s: available routes:
 s: 192.168.42.0/24
c : connected.
firewall manager: starting transproxy.
c : Accept: 192.168.42.106:50035 -> 192.168.42.121:139.
c : Accept: 192.168.42.121:47523 -> 77.141.99.22:443.
 ...etc...
^C
firewall manager: undoing changes.
KeyboardInterrupt
c : Keyboard interrupt: exiting.
c : SW#8:192.168.42.121:47523: deleting
c : SW#6:192.168.42.106:50035: deleting

Test connection to a remote server, with automatic hostname
and subnet guessing:

$ sshuttle -vNHr example.org

Starting sshuttle proxy.
Listening on ('0.0.0.0', 12300).
firewall manager ready.
c : connecting to server...
 s: available routes:
 s: 77.141.99.0/24
c : connected.
c : seed_hosts: []
firewall manager: starting transproxy.
hostwatch: Found: testbox1: 1.2.3.4
hostwatch: Found: mytest2: 5.6.7.8
hostwatch: Found: domaincontroller: 99.1.2.3
c : Accept: 192.168.42.121:60554 -> 77.141.99.22:22.
^C
firewall manager: undoing changes.
c : Keyboard interrupt: exiting.
c : SW#6:192.168.42.121:60554: deleting

Discussion

When it starts, sshuttle creates an ssh session to the
server specified by the -r option. If -r is omitted,
it will start both its client and server locally, which is
sometimes useful for testing.

After connecting to the remote server, sshuttle uploads its
(python) source code to the remote end and executes it
there. Thus, you don’t need to install sshuttle on the
remote server, and there are never sshuttle version
conflicts between client and server.

Unlike most VPNs, sshuttle forwards sessions, not packets.
That is, it uses kernel transparent proxying (iptables
REDIRECT rules on Linux) to
capture outgoing TCP sessions, then creates entirely
separate TCP sessions out to the original destination at
the other end of the tunnel.

Packet-level forwarding (eg. using the tun/tap devices on
Linux) seems elegant at first, but it results in
several problems, notably the ‘tcp over tcp’ problem. The
tcp protocol depends fundamentally on packets being dropped
in order to implement its congestion control agorithm; if
you pass tcp packets through a tcp-based tunnel (such as
ssh), the inner tcp packets will never be dropped, and so
the inner tcp stream’s congestion control will be
completely broken, and performance will be terrible. Thus,
packet-based VPNs (such as IPsec and openvpn) cannot use
tcp-based encrypted streams like ssh or ssl, and have to
implement their own encryption from scratch, which is very
complex and error prone.

sshuttle‘s simplicity comes from the fact that it can
safely use the existing ssh encrypted tunnel without
incurring a performance penalty. It does this by letting
the client-side kernel manage the incoming tcp stream, and
the server-side kernel manage the outgoing tcp stream;
there is no need for congestion control to be shared
between the two separate streams, so a tcp-based tunnel is
fine.

See also

ssh(1), python(1)

How it works

sshuttle is not exactly a VPN, and not exactly port forwarding. It’s kind
of both, and kind of neither.

It’s like a VPN, since it can forward every port on an entire network, not
just ports you specify. Conveniently, it lets you use the “real” IP
addresses of each host rather than faking port numbers on localhost.

On the other hand, the way it works is more like ssh port forwarding than
a VPN. Normally, a VPN forwards your data one packet at a time, and
doesn’t care about individual connections; ie. it’s “stateless” with respect
to the traffic. sshuttle is the opposite of stateless; it tracks every
single connection.

You could compare sshuttle to something like the old Slirp [http://en.wikipedia.org/wiki/Slirp] program, which was a userspace TCP/IP
implementation that did something similar. But it operated on a
packet-by-packet basis on the client side, reassembling the packets on the
server side. That worked okay back in the “real live serial port” days,
because serial ports had predictable latency and buffering.

But you can’t safely just forward TCP packets over a TCP session (like ssh),
because TCP’s performance depends fundamentally on packet loss; it
must experience packet loss in order to know when to slow down! At
the same time, the outer TCP session (ssh, in this case) is a reliable
transport, which means that what you forward through the tunnel never
experiences packet loss. The ssh session itself experiences packet loss, of
course, but TCP fixes it up and ssh (and thus you) never know the
difference. But neither does your inner TCP session, and extremely screwy
performance ensues.

sshuttle assembles the TCP stream locally, multiplexes it statefully over
an ssh session, and disassembles it back into packets at the other end. So
it never ends up doing TCP-over-TCP. It’s just data-over-TCP, which is
safe.

Support

Mailing list:

	Subscribe by sending a message to <sshuttle+subscribe@googlegroups.com>

	List archives are at: http://groups.google.com/group/sshuttle

Issue tracker and pull requests at github:

	https://github.com/sshuttle/sshuttle

Useless Trivia

This section written by the original author, Avery Pennarun
<apenwarr@gmail.com>.

Back in 1998, I released the first version of Tunnel
Vision [http://alumnit.ca/wiki/?TunnelVisionReadMe], a semi-intelligent VPN
client for Linux. Unfortunately, I made two big mistakes: I implemented the
key exchange myself (oops), and I ended up doing TCP-over-TCP (double oops).
The resulting program worked okay - and people used it for years - but the
performance was always a bit funny. And nobody ever found any security flaws
in my key exchange, either, but that doesn’t mean anything. :)

The same year, dcoombs and I also released Fast Forward, a proxy server
supporting transparent proxying. Among other things, we used it for
automatically splitting traffic across more than one Internet connection (a
tool we called “Double Vision”).

I was still in university at the time. A couple years after that, one of my
professors was working with some graduate students on the technology that would
eventually become Slipstream Internet Acceleration [http://www.slipstream.com/]. He asked me to do a contract for him to build
an initial prototype of a transparent proxy server for mobile networks. The
idea was similar to sshuttle: if you reassemble and then disassemble the TCP
packets, you can reduce latency and improve performance vs. just forwarding
the packets over a plain VPN or mobile network. (It’s unlikely that any of my
code has persisted in the Slipstream product today, but the concept is still
pretty cool. I’m still horrified that people use plain TCP on complex mobile
networks with crazily variable latency, for which it was never really
intended.)

That project I did for Slipstream was what first gave me the idea to merge
the concepts of Fast Forward, Double Vision, and Tunnel Vision into a single
program that was the best of all worlds. And here we are, at last.
You’re welcome.

Change log

All notable changes to this project will be documented in this file. The format
is based on Keep a Changelog [http://keepachangelog.com/] and this project
adheres to Semantic Versioning [http://semver.org/].

0.78.2 - 2017-07-09

Added

	Adds support for tunneling specific port ranges (#144).

	Add support for iproute2.

	Allow remote hosts with colons in the username.

	Re-introduce ipfw support for sshuttle on FreeBSD with support for –DNS option as well.

	Add support for PfSense.

	Tests and documentation for systemd integration.

	Allow subnets to be given only by file (-s).

Fixed

	Work around non tabular headers in BSD netstat.

	Fix UDP and DNS support on Python 2.7 with tproxy method.

	Fixed tests after adding support for iproute2.

	Small refactoring of netstat/iproute parsing.

	Set started_by_sshuttle False after disabling pf.

	Fix punctuation and explain Type=notify.

	Move pytest-runner to tests_require.

	Fix warning: closed channel got=STOP_SENDING.

	Support sdnotify for better systemd integration.

	Fix #117 to allow for no subnets via file (-s).

	Fix argument splitting for multi-word arguments.

	requirements.rst: Fix mistakes.

	Fix typo, space not required here.

	Update installation instructions.

	Support using run from different directory.

	Ensure we update sshuttle/version.py in run.

	Don’t print python version in run.

	Add CWD to PYTHONPATH in run.

0.78.1 - 2016-08-06

	Fix readthedocs versioning.

	Don’t crash on ENETUNREACH.

	Various bug fixes.

	Improvements to BSD and OSX support.

0.78.0 - 2016-04-08

	Don’t force IPv6 if IPv6 nameservers supplied. Fixes #74.

	Call /bin/sh as users shell may not be POSIX compliant. Fixes #77.

	Use argparse for command line processing. Fixes #75.

	Remove useless –server option.

	Support multiple -s (subnet) options. Fixes #86.

	Make server parts work with old versions of Python. Fixes #81.

0.77.2 - 2016-03-07

	Accidentally switched LGPL2 license with GPL2 license in 0.77.1 - now fixed.

0.77.1 - 2016-03-07

	Use semantic versioning. http://semver.org/

	Update GPL 2 license text.

	New release to fix PyPI.

0.77 - 2016-03-03

	Various bug fixes.

	Fix Documentation.

	Add fix for MacOS X issue.

	Add support for OpenBSD.

0.76 - 2016-01-17

	Add option to disable IPv6 support.

	Update documentation.

	Move documentation, including man page, to Sphinx.

	Use setuptools-scm for automatic versioning.

0.75 - 2016-01-12

	Revert change that broke sshuttle entry point.

0.74 - 2016-01-10

	Add CHANGES.rst file.

	Numerous bug fixes.

	Python 3.5 fixes.

	PF fixes, especially for BSD.

Index

 Symbols
 | S

Symbols

 	
 	
 --disable-ipv6

 	sshuttle command line option

 	
 --dns

 	sshuttle command line option

 	
 --firewall

 	sshuttle command line option

 	
 --hostwatch

 	sshuttle command line option

 	
 --method [auto|nat|tproxy|pf]

 	sshuttle command line option

 	
 --no-latency-control

 	sshuttle command line option

 	
 --pidfile=pidfilename

 	sshuttle command line option

 	
 --python

 	sshuttle command line option

 	
 --seed-hosts

 	sshuttle command line option

 	
 --syslog

 	sshuttle command line option

 	
 	
 -D, --daemon

 	sshuttle command line option

 	
 -e, --ssh-cmd

 	sshuttle command line option

 	
 -H, --auto-hosts

 	sshuttle command line option

 	
 -l, --listen=[ip:]port

 	sshuttle command line option

 	
 -N, --auto-nets

 	sshuttle command line option

 	
 -r, --remote=[username@]sshserver[:port]

 	sshuttle command line option

 	
 -v, --verbose

 	sshuttle command line option

 	
 -X, --exclude-from=file

 	sshuttle command line option

 	
 -x, --exclude=subnet

 	sshuttle command line option

S

 	
 	
 sshuttle command line option

 	--disable-ipv6

 	--dns

 	--firewall

 	--hostwatch

 	--method [auto|nat|tproxy|pf]

 	--no-latency-control

 	--pidfile=pidfilename

 	--python

 	--seed-hosts

 	--syslog

 	-D, --daemon

 	-H, --auto-hosts

 	-N, --auto-nets

 	-X, --exclude-from=file

 	-e, --ssh-cmd

 	-l, --listen=[ip:]port

 	-r, --remote=[username@]sshserver[:port]

 	-v, --verbose

 	-x, --exclude=subnet

 	subnets

 	
 	
 subnets

 	sshuttle command line option

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		sshuttle: where transparent proxy meets VPN meets ssh

 		Overview

 		Requirements

 		Client side Requirements

 		Linux with NAT method

 		Linux with TPROXY method

 		MacOS / FreeBSD / OpenBSD / pfSense

 		Windows

 		Server side Requirements

 		Additional Suggested Software

 		Installation

 		Usage

 		Usage Notes

 		Platform Specific Notes

 		TPROXY

 		Microsoft Windows

 		Man Page

 		Synopsis

 		Description

 		Options

 		Examples

 		Discussion

 		How it works

 		Support

 		Useless Trivia

 		Change log

 		0.78.2 - 2017-07-09

 		Added

 		Fixed

 		0.78.1 - 2016-08-06

 		0.78.0 - 2016-04-08

 		0.77.2 - 2016-03-07

 		0.77.1 - 2016-03-07

 		0.77 - 2016-03-03

 		0.76 - 2016-01-17

 		0.75 - 2016-01-12

 		0.74 - 2016-01-10

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

